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Abstract:  In  this  paper, we address the atmospheric  entry  guidance and control 
problem for Mars precision landing. The guidance  and control design  is  based on 
the principle of tracking a reference drag versus  velocity  profile in the  entry flight 
corridor, which  is determined by physical constraints of the flight. An integrated 
adaptive/robust control approach to atmospheric  entry  guidance  and control is 
introduced to deal with different uncertainties. 
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1. INTRODUCTION 

To facilitate guidance, navigation, and control de- 
sign for Mars precision landing, the Mars landing 
process is divided into  three phases, i.e., atmo- 
spheric entry phase, parachute phase, and terminal 
landing phase. In this study, we only  focus on guid- 
ance and control design  for the  entry phase, i.e., 
the phase  from  atmospheric  entry of Mars orbiter 
to parachute  deployment. Feedback aerodynamic 
maneuvering  during the  entry phase is  used to re- 
duce the  error  to a required level at the  parachute 
deployment.  Hindering the achievement of this goal 
are  uncertainties in the guidance and control sys- 
tems. The main sources of the uncertainties include 
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winds/gusts, air density dispersions, and  measure- 
ment  and knowledge errors; in addition,  some sim- 
plification assumption  on  mathematical  model  made 
to facilitate the control design also generates a gap 
the real system  and the employed model, which  is 
conveniently treated as uncertainty. Basically, the 
above uncertainties are classified as external  distur- 
bances and  parametric uncertainty. 

In this  paper, we will address the guidance and 
control problem from the view point of adaptive 
and robust control design. The following questions 
will be answered to provide an  integrated design 
method: given an a priori  error  bound,  does  there 
exist any  guidance and control law to achieve an 
error level not greater  than  the given bound  under 
all admissible disturbances and vehicle evolution 
parameter changes, and how does  one design such 
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a control law? In particular, we consider the lon- 
gitudinal  landing  guidance following McEneaney- 
Mease's approach [6].  The objective is to achieve 
a certain specified range during entry by control of 
the  lift/drag  ratio component in position-velocity 
plane, which is achieved by modulation of the Mars 
landing vehicle's angle of attack  and/or bank angle. 
The guidance approach is based on the principle 
of tracking a reference drag-velocity profile in the 
entry flight corridor, which  is determined in the 
drag-velocity plane by physical constraints of the 
flight; those  constraints include the limitations of 
the thermal  protection  system surface temperatures, 
normal load factor,  dynamic pressure, and equilib- 
rium glide flight (see [2] for details). A guidance 
approach based on drag reference tracking  has been 
used in the NASA Space Shuttle re-entry guidance 
law [2,3]. Basing guidance and control law  on drag 
is advantageous because drag is essentially directly 
measured by the accelerometer, and  the range to be 
flown during  entry  can  be decided by the  drag ac- 
celeration profile maintained  throughout the  entry 
flight and  can  be predicted using simple analytical 
techniques. 

There  exists several guidance and control techniques 
under ideal conditions, i.e., assuming perfect  mea- 
surement and  no  uncertainty [2,6,7], but without 
guarantee for error  tolerance level due to distur- 
bances. In  this paper, basing on previous guidance 
and control results, we will  develop an  integrated 
guidance and control law to minimize the impact 
of uncertainties.  This 2-part paper is organized as 
follows: in section 2, an uncertain  drag dynamical 
model is derived from the basic equations of motion 
with the consideration of atmospheric disturbances 
and some operating  parameter variations; the guid- 
ance and control problem for Mars atmospheric 
entry is formulated as a problem of tracking a drag- 
velocity  profile. In section 3,  the guidance and con- 
trol problem is solved as an adaptive  disturbance 
rejection problem where the parametric  uncertainty 
and  atmospheric  disturbances  are  treated  separately 
so as to improve system performance. 

2. UNCERTAIN  DYNAMICS OF MARS 
ATMOSPHERIC ENTRY 

The objective of the longitudinal guidance is to 
control the range to be flown during entry, which 
is a function of the drag-velocity profile [2]. The 

main idea for the guidance strategy is to control 
the vehicle to follow a given drag-velocity profile. 

2.1 Equations of Motion 

The equations of translational motion used in this 
paper are developed in a coordinate system with one 
axis oriented along the Mars-relative velocity vector, 
one axis perpendicular to  the plane formed by the 
position and Mars relative velocity vectors, and 
the  third axis completing the right-hand  coordinate 
system. The Mars-relative translational  state of the 
landing vehicle  is represented by the variables R 
(range), h (altitude),  V (velocity relative to  the 
Mars), 7 (flight path angle), and q6 (heading angle). 
These equations of motion are as follows [lo]: 

Ei = vcosy  (1) 

= Vsiny (2)  

V = -D - gsiny (3)  

1 v2 

V r  i. = -((- - g)  cosy + Lcosu) (4) 

1 V2 $="- cos2 y tan 4 sin $ + L sin u) (5) VcosJ-1- 

where u is the bank (or roll) angle and 4 is  vehicle 
Mars-relative latitude, T the distance between the 
lander and  the  center of Mars, g = p / r 2  with 
p the Martian GM is the Martian  gravitational 
acceleration. These equations of motion neglect the 
Coriolis and  centripetal accelerations due to  the 
Mars' rotation because they  are relatively small. If 
the relative motion of the atmosphere to Mars is 
ignored, the specific drag  and lift are given  by the 
following: 

1 s  1 s  
2 m   2 m  

D = - p " c ~ V ~ ;  L = - p " c ~ V ~ ,  (6)  

where CD and CL are  drag  and lift coefficients, 
respectively; they change with the change of the 
angle of attack  and the magnitude of the velocity. 
An exponential atmospheric density p model  is  used 
in the following. 

2.2 Drag Reference and Range Prediction 

For the Mars atmospheric  entry, we employ a drag 
profile  in the  drag acceleration / Mars-relative VI+ 

locity plane. The  drag profile  is  chosen to stay 



within the  entry flight corridor due to some  physical 
constraints  and to minimize the accumulate aerody- 
namic  heat load (see [2] for details). A typical drag 
profile, D, = f ( V ) ,  is shown  in  Fig. 1, composed 
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Fig. 1. Typical Drag-Velocity  Profile 

of a quadratic  drag  segment,  an equilibrium glide 
(linear) segment, and a constant  drag segment [2,6]. 
Each of the segments is taken as a general quadratic 
profile: f ( V )  = q, + C ~ V  + c2V2. The objective for 
the  entry guidance law is to achieve a desired range 
at a certain specified  velocity. In fact,  the range  can 
be  approximated by the following relation: 

V Vf 

at the earlier stage of the flight as the flight path 
angle is small. During the  latter  part of the  entry 
when the  landing vehicle is at lower speed, one  can 
use an energy variable E = gh + iV2  to  replace 
the velocity variable V in the  drag expression  [2]. 
Therefore, the  range  to  be flown  is determined by 
the drag-velocity (or drag-energy) profile. In the 
following, the control and guidance law is designed 
so that  the  actual  drag will track the given drag- 
velocity  profile. 

2.3 Dmg Dynamics  with  Uncertainty 

To facilitate the control design  for entry guid- 
ance based on the drag-velocity profile,  one should 
directly consider the  drag dynamics, instead of 
the dynamical equations considered earlier in (1)- 
(5). We are  particularly interested in the impact 

of the  atmospheric uncertainties, including surface 
winds/gusts  and  atmospheric density dispersions. 

Impact of Atmospheric  Uncertainties 

The  atmospheric uncertainties considered in the 
following include the  air density dispersion and  the 
winds/gusts. When uncertainties are presented, D 
and L in the equations of motion are not  drag  and 
lift, rather they  are the aerodynamic forces parallel 
and perpendicular in the plane of symmetry to  the 
vehicle  velocity vector relative to Mars, respectively. 
The air flow velocity due to winds and  gusts  can 
be represented as V, = V + AV, where  V is the 
velocity of the landing vehicle relative to Mars, 
AV is the  disturbance  due to  the winds. The  drag 
and lift coefficients change  with the change of the 
angle of attack as well as the  magnitude of velocity. 
The influence of the surface winds/gusts, which are 
viewed as disturbances, can also contribute to  the 
changes  in  specific drag  and lift coefficients,  in  which 
case: 

where Cg and C: are  the  actual  drag  and lift  coef- 
ficients, and ACD and ACL are  the corresponding 
deviations due to  the above treatment. 

The atmospheric density can  be modeled as the 
ideal exponential density model (8) plus uncertain 
dispersion Ap (see Fig. 2), i.e., it can  be well 
represented by the following: 

Fig. 2. Mars Atmospheric  Density Dispersion 



The influence of the  atmospheric uncertainties con- f i  D2 D 0 2  

tributes  to  the changes in  specific drag and lift, in = -H(- D - - D2 + 2- V + 2- V2 - C - &,). (11) 
which  case: D = DO + A D  and L = LO + A L ,  where 
DO and LO are  drag  and lift without disturbances, n o m  (101, one can solve replace the and 
and A D  and A L  are  the resulting perturbations. k defined by (9) in (ll), one  has the following 

Rom  the density model (7), one has that equation: 

or $ = -& + 61 for some ~ d .  for some smooth functions go, 91, and g2  of D, D,  

From the  drag formulation, one  has 
and  V, where 8 is a parameter vector defined  by 

- = - + 2 ~ + - = - - + 2 r j + C + 6 a . ( 8 )  D p  C D  h v 
D p vf C D  H 

where C := + and 6, = CQ 
CD 

1 -cosy 
sin2 y 

Uncertain  Drag  Dynamical Model 

Now  we are ready to derive the  drag dynamics h 
for control design. The control of the  translational V = - D - g s i n y = - D - g -  V 

On the other hand,  from (3) and (2), one has 

motion is performed by adjusting u := % COSO, 

which can  be achieved  by the modulation of either 
angle of attack or the bank angle. =: w ,  D, v, c, S a ) ,  

In the following, we assume the gravity acceleration 
g = p / Q  with f being the reference radius is for smooth functions 6 , 51 and of D ,  v, c, and 
constant.  The  actual variation of g  can  be  taken Sa. 
as a part of the  disturbance to be discussed later.  The above equations give a  model for drag dynamics 

From the  equation (2), (3), and (4), one  has  with uncertainty. Note that  the model (12)-(14) is 

d 
fairly general to cover many  other sources of un- 

i = -(vsiny) = Vcosyq+Vsiny certainties. In particular,  the measurement noises, 
dt estimation errors, as well as the gravitational ac- 

celeration variations can  be conveniently considered 
= (T - g) - D v  - "(1 - =cos2y) + D c o s ~ u . ( 9 h  part of the combined disturbance w. If we take 

2 1  = D,z2 = D, and 2 3  = V,  then complete 
dynamics governing the  drag evolution is as follows: 

V2 h v2 T 

Q T 

With  the consideration of atmospheric uncertain- 
ties,  from (8), one  has x1 = x2 

D D  (1 + F)h = -H(- + 2- - C -6,). (10) +W+g2(zl,z2,Z3)u (15) 
D V  x 3  = [(21,Z2,z3,C,6a) 

x2 = "gO(zI,z2tz3) -9l(Zl,Z2,Z3ru)8 

Take derivatives on both sides, one  has 
( z  = 2 1  

gH .. gHDh + 4g2H sin2 y In the following, we will use the above  dynamical 
V v3 V2 (1 + 2 7 ) h  + 6- equation to design a  guidance law. 



3. GUIDANCE AND CONTROL DESIGN 

3.1 Guidance as a Tracking Problem with Disturbance 
Rejection 

As the  drag profile  is  given by the range-velocity 
requirement, to reach certain range requirement, it 
is  sufficient  for the  drag governed  by the dynamics 
(12)-( 14) to follow the corresponding drag-velocity 
profile in the presence of disturbances. Therefore, 
the guidance  problem  can  be  formulated as a track- 
ing problem  with  disturbance rejection. 

Guidance Problem: Consider the uncertain sys- 
tem (15), suppose 8,  E 8, where 0 is a convex  closed 
bounded admissible parameter set. Given a drag- 
velocity  profile, D,  = f ( V ) ;  design a feedback  con- 
troller with  measurement of b, D ,  and V ,  as well as 
the profile information, such that for all admissible 
energy-bounded  unknown parameters, D governed 
by (12) satisfies the following requirements: 

Tracking: if w = 0, 

lim { D ( t )  - f ( V ( t ) ) }  = 0. 
t-tm 

Disturbance  Rejection: 
T T 1 IlD(t) - DT(t)l12  dt 5 X2 1 llw(t)1I2 dt + e 

0 0 

for  given e > 0, and some X > 0. 

In  the following section, we will provide an inte- 
grated  adaptive/robust control approach to deal 
with the above  problem based on the dynamical 
equation (15). The control architecture is illustrated 
in Fig. 3. The techniques of linearization, X,- 
control, and dissipation theory-based adaptive con- 
trol will be  used ([5]). 

3.2 Feedback Linearization 

The  starting point for this problem is to design a 
controller for the  disturbance rejection problem with 
assumption that  the  parameter 8 is  known.  Consider 
system (15), take 

where v is the new input variable. Let z = 
where 

"t""""""""""""- """"_ t - ,  
I 

Fig. 3. Adaptive  Disturbance Rejection 

z1 = x1 - D, = e,  z2 = 2 2  - D,; 

then equation (15) can  be represented as: 

i = AZ + B i d +  B ~ v  
k3 = t(z1 + D,, 22 + b,, 2 3 ,  c, Sa) (17) 
e = z1 

where A = [: i] ,B1 = B2 = [ y ] ,  and C = 
[ 1 01. The above (error)  system is input-output 
linear with linear party  state z ;  we  will use a linear 
technique to derive the control v. 

3.3 '?i,-Control Design 

Consider the linear part of the equation (17) with 
state z .  Note that  the  error system is independent 
of the  state variable z3 = V and observable from 
output e = 21. Suppose P > 0 is a solution to  the 
Riccati equation for the state-feedback %,-control 
problem: 

P A  + ATP + P (  "B1BT - B2BT)P + CTC = 0. 1 
X 2  

If X > 1, then P > 0. In  this case, the R,-control 
solution gives  feedback controller: 

v = FZ := -B2 Pz .  ' T  
2 

with J:(lle(t)l12)dt X 2  J:(lld(t)l12)dt. One  can 
recover the following controller: 

u = K ( e ; ~ j r , ~ ) r , D r , Z 1 , Z 2 , Z 3 )  



to achieve the  disturbance rejection. 

3.4 Adaptive  Control Law 

However, as 8 is not known, the above control law 
can  not  be directly used. One  can use an  estimate p 
of 8 instead,  and  the control law  would be 

= ~ 0 3 ; 6 r , ~ r , ~ r , ~ 1 , ~ 2 , 2 3 )  (18) 

’ where p is given  by an  update law: 

P = d z ,  4 .  

Therefore, the guidance and control system has the 
structure as illustrated in Fig. 3. The  error equation 
can  be equivalently represented as: 

( i = ( A  + B2F)z + B ~ w  

where F is a state feedback matrix defined as F = 
3BTP and P satisfies the following equation: 

P ( A  + B2F) + ( A  + B2F)TP 

+ + P B ~ B ; P  + cTc = 0. 

If V ( z )  = zTPz, then completion of square implies 

- ( ( A  + B ~ F ) Z  + BW) I x2 1 1 ~ 1 1 ~  - lle112(19) 
av 
ax 

To design the  update law, we take  the following 
function as a storage function [5]: 

W ( z , p )  = V ( z )  + (P - eITQ@ - 0) 

where Q > 0 such that 

Therefore, by completion of square, one has 

W Z , P )  I x2 llw1I2 - 11e1I2 + 

2 ( ~ - 0 ) ~ Q ( j + Q ”  [ O  ~ T ( ~ I , Q , ~ ~ , u ) ] P z )  

Therefore, if one  chooses 

where is the vector projection (see [5]), then 

Thus, we have 
T T 

Let’s  look at the  tracking issue if w = 0. We still use 
W ( z , p )  as the Lyapunov function. Then  with  the 
above  adaptive law, one  has ~ ( z , p )  I - lle1I2 5 0. 
Therefore, z and p -  8 are bounded. It can  be shown 
that lle1I2 dt < 00, and e(t)+O as t+m. 
Therefore, the  adaptive control law  given  by (18)- 
(20)  achieves adaptive  disturbance rejection. 
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